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A method based on a Fourier domain annroach is nresented for comn 1g firaction of
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pulsed ultrasound wave from a rigidly baffled source in lossless media. The propagation from a
planar source is dependent on the total impulse response which is just the Green’s function.
Computing the spatial transform of the point spread function gives the propagation transfer
function which multiplies the spatial spectrum of the spatial excitation to produce the spatial
spectrum of the propagated wave. The propagation transfer function can then be considered to
be a time-varying spatial filter. The results are valid for separable arbitrary time excitation and

n]anar qnahal distributions of the source. The solution is amenable to lnnllldlno the effects of 2

finite receiver. Results of different simulations using this method are 1ncluded.

INTRODUCTION

Acoustic imaging and tissue characterization tech-

niques require information about the insonifying wave at the
object location in order to isolate the object’s effects on the
wave. While the propagation of monochromatic waves is
well solved by the application of the angular spectrum tech-
nique' or Fresnel integrals, the propagation of a pulse of
ultrasound with arbitrary temporal and spatial shape is less
well understood. Others?™'* have sought to find expressions
for the field radiated from a baffled piston source into a loss-
less medium in various forms. '

The approach followed here is based on the spatial im-
pulse response method introduced by Stepanishen*~’ and re-
viewed by Harris,® where the field is expressed as a temporal
convolution of the time excitation with the spatial impulse
response of the propagation. It differs from Stepanishen’s
work in that linear systems theory is used to point out the
importance of the total impulse response (and its equiv-
alence to the Green’s function). Also, the expressions for the
spatial impulse response functions are found in the spatial
transform domain. In this domain, propagation of the wave
is seen to be the application of a time-varying spatial filter to
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I. THEORY

The problem that we wish to solve can be stated using
the geometry of Fig. 1. Given the z-directed velocity excita-
tion over an arbitrary shaped region of the z = 0 plane, we
wish to find the acoustic velocity potential ¢(x,y,z,t) at an
arbitrary point in the positive-z half-space. The region in the
input plane will be assumed to be rigidly baffled. (It has been
shown'*'* to be possible to relate impedance-matched
boundary conditions and resilient boundary conditions to
the solutions for the rigid baffle.) We will assume that the
time and space variations of the input z velocity are separable
and that the z velocity is given by

v, (6,y,0,t) = T(t)s(x,y) . (1)
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In the impulse response technique, it ha b een shown
that the relation between the acoustic poiential

z velocity is
where the * symbol indicates convolution over the variable

appearing immediately below it. The quantity p(x,p,z,7) is
known variously as the “impulse response,”“"“ the “gener-
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sponse,”'? or the “spatial impulse response.”®® We will use

the latter nomenclature and call p(x,y,2,t) the spatial im-
pulse response. The spatial impulse response is defined as the
velocity potential that will result when the source is excited
by a z velocity of the form s(x,y)8(t), where § is the Dirac
impulse function. Hence, the problem of finding ¢ (x,p,2,t) is
reduced to one of finding the spatial impulse response of the
assumed spatial excitation.

Other approaches have been successful in computing
the desired potential in lossless media using geometric inter-
pretations of the integral limits and are reviewed in Ref. 8.
More recent techniques include Refs. 13—15. Because of the
geometrical interpretation of the limits the integrals do not
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gorithms such as the FFT. :

It should be noted that the problem posed where one
knows the z-directed velocity can be referred to as the
“‘source propagation problem” since the z-directed velocity
is frequently assumed known in modeling transducers. The
case where one knows the velocity potential in the input
plane ¢{x,y,0,¢) could be characterized as the “field propa-
gation problem” since it is characteristic of wave diffraction
problems from one plane to another parallel plane. This dif-
fraction problem can be readily cast into the form of a source
propagation problem in the following manner.

A separable velocity potential at the input plane would
be of the form

¢(X,y,0,t) ZS(X,J’)T(t) . (3)
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FIG. 1. Source and receiver geometry.

We want to convert this to an equivalent z-directed velocity
distribution so that we can use Eq. (2) and the method to be
described in this articie. The reiation between the z compo-
nent of velocity and the velocity potential results from the
relation

v(x,pz,t) = — Vo(x,p,z,1) . 4)
Hence,
v, (xp,z,t) = — M (5)
oz

The wave given by Eq. (3) is planar and propagating in the

+ z direction. As such, the argument of the traveling wave
will be of the form ¢t — z, and the spatial z derivative is relat-
ed to the temporal derivative by the nnemtmnal relation

(6)

Hence, we find that for a given ¢ (x,y,z,¢) of the form of Eq.
(3), the equivalent z-directed velocity is

AAl v v N £)

UWA A, YUyt )
b, = —c EIDL F (M
= —C'S(X,,V)T'(f), (8)

where 7’ is the time derivative of 7(¢). By comparison with
the form Eq. (1) we would use 7(7) = — ¢7'(#) in the fol-
lowing equations for the solving the field propagation prob-
lem.

The spatial impulse response p(x,y,z,t) is defined* as the
response to a spatial excitation of the form s(x,p)8(¢). To
find this response we use linear systems theory.' The rotal
impulse response h(x,p,z,t) of a system is represented as in
r'lg L[d} An ‘Ii‘l‘lplilblvc iuput of the form U\A,y)U\l} pro-
duces the total impulse response #(x,y,z,t) at the observa-
tion plane. If the system is linear and space invariant (as is
propagation in a linear homogeneous medium), then linear
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FIG. 2. (a) Propagation impulse response; (b) spatial impulse response;
(¢) spatial impulse response in the Fourier domain.

systems theory predicts' that the spatial impulse response
p(x,p,z,t) is related to the total impuise response 72(x,y,t) for
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equation

p(x,y,z,t) = s(xp)Erh(x.pt) , 9
as shown in Fig. 2(b). Hence, to find the spatial impuise
response in this approach, we need to first find the total im-

pulse response of the system A(x,y,z,1).

The total impulse response of the system is the propaga-
tion field resulting from a source at the input plane of the
form &(x,y)6(¢) that solves the wave equation and meets the
boundary condition. This solution is just the Green’s func-
tion satisfying the wave equation and boundary conditions.
Hence, we find that if the Green’s function is known, one

Lnawe the tatal imnnlee reenonge fuinction
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The double spatial convolution in Eq. (9) overx and y is
difficult to implement on a computer. To convert the convo-
lutions to multiplications, we choose to enter the spatial fre-
quency domain by taking the two-dimensional Fourier spa-
tial transform of the system input and output. This is shown
in Fig. 2(c) (where the tilde indicates the spatial Fourier

trancform of the function) Fauation (Q9) then hecomesg
transiorm oOf in€ Iunclion ). cquatcn () inén secomes

Syt ) =5 ki) (forfyt ) - (10)
The quantity z(f, /,»t) is the propagation transfer function
and is the spatial transform of the total impulse response (or,
equivalently, the spatial transform of the Green’s function of
the problem). Often, it is easier to find the propagation
transfer function directly than it is to find the Green’s func-
tion. For other cases, the Green’s function can be found and
the propagation transfer function computed by taking the
spatial Fourier transform using FFT algorithms.

The temmique, then, uegms with a represemauon of the
wave equation model. The Green’s function that solves the
wave equation and satisfies the assumed rigid baffle bound-
ary conditions is then found, and the propagation transfer
function computed by taking the spatial transform of the
Green’s function. (Alternatively, the propagation transfer
function can sometimes be found directly from the equation
and boundary conditions.) The spatial transform of the spa-
tial input function s(x,y) is computed and multiplied by the
propagation transfer function as in Eq. (10). The inverse
spatial transform of the product yields the spatial impulse
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response p(x,y,z,t). The temporal convolution of Eq. (2) is
then evaluated to find the desired velocity potential.

To check the correctness of the method, we wish to com-
pare the results with those obtained by other techniques for
lossless media. The wave equation is

1 3%

c’ g’
where c is the sound velocity in the medium. The equation is
to be solved subject to the boundary condition that
v, (x,9,0,¢) is the known z-directed velocity over some region

of the source plane at z = 0. It is assumed that the velocity of

(11)

Vi —

the source is O outside of this region (i.e., that the source is in
a rigid baffle) and that the potential meets the Sommerfeld
radiation conditions' as the distance goes to infinity. The
geometry is illustrated in Fig. 1. The acoustic velocity vector
is easily related to the acoustic velocity potential by finding
the negative of the gradient of the potential.

The Green’s function for the rigid baffle is known'®to be

AL AFILLI S 2RNCUIVN 0L AL g0 Valind 11 1

(assuming only outward traveling waves)
—R)/27R,

g(x,y,z,t)
O N7y

=22, (pJtT —22)H(ct — 2),
wherep =2m\[f2 + /% and H(2) is the step function.

Since the results are going to be computer implemented
and normalized to maximum values, we will drop the multi-
plicative constants. From Eq. (10), we know that the spatial
transform % of the spatial impulse response is given by the
product of § (the spatial transform of the input velocity spa-
tial function) and the propagation transfer function 71 .In

\ rr,

this form we can identify the J,(p\c’t> — 22 ) H(ct — z)
term as a time-varying multiplicative spatial filter for the
propagation in lossless media from a source in a rigid baffle.

The high spatial frequencies are attenuated compared to the
lower spatial frequencies. As time increases, the Bessel func-
tion contracts causing a generally increased attenuation of
the high spatial frequencies.

To check the validity of the technique we consider a
circular piston producing an acoustic potential of radius a
driven with a Dirac impulse time excitation (i.e., we will find
the spatial impulse response of a uniform plston). Refer-
ences 2—11 and 13 have studied this problem. The transform

of the spatial dependence of the source is

5(fo. 1) =aJ(pa)/p (15)
and upon substitution into Eq. (14), the solution for the
spatial impulse response is rediscovered'' as

p(rzt) =kH(ct —z) ( J,(pa)
X Jo(pyc® t2 22)Jo(prydp, (16)

where, for convenience, k represents the multiplicative con-
stants. The integral is evaluated with the Sonine~Dougall
formula'® to give

forr<a
(const z<ct<\/z2 —(a—n)7?,
S’ =22+ 7 —a*\ a2 .
p(rz,r) =1 ——cos k ) VZ+ (@ —r<et< V22§ (@ + 1), (17)
2"\6‘ !
L0 ct>\z°+ (a +r)-.
forr>a
(0 z<ct<NzZt— (a—r)°
kK _(lt2P -2+ -4 r———y
p(rz,t) = {—=co0s ‘( — + ) VZ+ (@a—r) <ct <22+ (a +7r)?, (18)
T \  2rjcit*—z¢ ]
L0 ct>\Z+ (a+ ).

Within the neglected multiplicative constants, these results
agree with those obtained by other techniques in Refs. 24, 7,
10, and 11, thereby confirming the technique of using the

PSS

spatial frequency domain as in Eq. (14).

Il. NUMERICAL SIMULATIONS

An additional advantage to the spatial spectrum ap-
proach discussed here beyond the physical interpretation of
the propagation as a time-varying spatial filter is that the
solutions are readily amenable to numerical solutions
thTG'ugu the use of FFT routines and Fourier-Bessel algo-
rithms'® for circularly symmetric geometries. To illustrate
numerical solutions we consider some cases. The following

simulations have been done using a 64 X 64 array of data.
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f
While the method gives a three-dimensional solution at any

observation distance, one dimension is eliminated in the
plots by representing the solution through a median of the
source. The plots show the amplitude of the wave plotted
against cross direction and time. For plotting convenience,

the following plots have been normalized to the maximum

amplitude value. The spatial axis is normalized to the char-
acteristic source size D (i.e., either the diameter or the width
of the source), and the time axis is normalized by the value of
D /c. The origin of the time axis begins at z/c, the instant that
the first part of the wave arrives at the observation plane. All

plots are in an observation plane located 10 cm in front of the
source plane. (These simulation results have been previously

source plane. (These simulationr esults have been previously
pubhshed in an unrefereed conference proceedings.!”)
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transfer functlon Then
the field at a given time. For a radially symmetric case, the
FFTs can be replaced by a faster Hankel transform algo-
rithm. *® One of the features of the technique is that the meth-
od does not require speciﬁc sampling in time or distance z so
the field can be computed anywhere or at any instant of time
without requiring large amounts of computer time.

Figure 3 shows the diffraction pattern from a circular
transducer (the diameter is D = 2.2 cm) excited by an im-
pulse as observed on the axis, x = 0. At # = z/c the potential
is replica of the excitation. As time progresses, the potential
is a combination of waves from various points on the source.
Late in time two distinct “tails” are observed and

plained in terms of edge waves in Ref. 3.
Figure 4 is a similar impulse excitation, but for a square
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FIG. 4. Lossless propagation of square transducer (D = 2.2 cm), impulse
excitation, z = 10 cm.
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FIG. 5. Lossless propagation from a truncated Gaussian wave (1/e point is
0.491 cm from center), impulse excitation, z = 10 cm.

transducer that is 2.2 cm on a side. The observation point is
the same distance from t
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in rig. o, ine patiern i an axiSymimeiric
Jaussian shaned wave with an imnulse time excitation. The
(yaussian shaped wave with an 1m pulse time excitation. 1nhe

1/e point is 1.1/y/5 cm from the center with the observation
point kept the same as in the previous figures. The shape of
the Gaussian wave stays. much the same because of the low
spatial frequency content of this waveshape. Only large val-
ues of time cause substantial spatial filtering for these low
spatial frequencies.

B. Case 2. Arbitrary time excitation

For a tim
wave is a convolution between the spatial impulse response
and the temporal excitation portion of the source acoustic
potential, as given by Eq. (2). Figure 6(a) is the circular
transducer of Fig. 3 (the diameter is 2.2 ¢cm) excited by a
constant amplitude pulse of 10-us duration for a lossless me-
dium. The smoothing effect of the time-domain convolution
isevident axong the propagatmn direction. F igure U\ b) is the
same transducer excited by one cycle of square wave with a
12-us period. We now note a more complicated behavior
with a noticeable time delay before reaching the maximum
amplitude on-axis and an apparent differentiation across the
width dimension. [Figure 6(a) also has a time delay but this
time delay is less noticeable. ]

C. Case 3. Finite receiver effects

A receiver which is not a
observed field in the way that it averages the field. This aver-
aging effect can be included in this method. The spatial fre-
quency domain is well suited to include these effects since
the receiver contributes another low-pass spatial filter.

The averaged fieid can be written as

r(b(x—x Y —Yizt)

{(d(x,p,z,1) i)
s
X A (x;,;)dx; dy; , (19)
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where S is the surface of the receiver and A (x;,p;) is the
receiver sensitivity. The above average is a two-dimensional
spatial convolution or a simple product in the spatial fre-
quency domain. Thus the receiving transducer is modeled in
the spatial frequency domain as a multiplicative spatial filter
given by A(f,, /). The response for an impulse-excited
transducer as measured at the receiver is

(Bx,2,0)) = F " 5(fi £,)A (fur ;) o (pdc?t? — 2°) ]
><H(ct——z), (20)

where . ~'[e] is the inverse two-dimensional transform
operator. Figure 7 shows the detected field for receivers of
different size. The source is the circular transducer used in
Fig. 3. The spatial convolution effect of the receiver is seen in
the slight slope of the edge waves.

I1l. SUMMARY

This article presents a computationally efficient method
of computing the transient acoustic waves in lossless media.
The fields are expressed in terms of the spatial impulse re-
sponse which is found by inverse transforming the product

of the transform of the spatial excitation and the propagation
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FIG. 7. Impuise response measured with finite size receiver. Circular source
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transfer function. The propagation transfer function has
been shown to be the transform of the Green’s function
which is the total impulse response of the propagation prob-

nature or restrictionson

n distance have been made. Additionally, the
solutlons in the space domain use the computationally effi-
cient Fourier transform. Once the spatial impulse response is
known, Eq. (2) can be used to find the field for an arbitrary
time excitation and Eq. (20) can be used to mcorporate the
resuits of a finite aperture receiver. Several nume

...... Locin liane nta tha results
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nique.
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